
An Analysis of Multicore Specific
Optimization in MPI

Implementations

Pengqi Cheng & Yan Gu
Tsinghua University

Introduction

➲ CPU frequency stalled
➲ Solution: Multicore
➲ OpenMP – shared memory
➲ MPI – Message Passing Interface
➲ MPI will be more efficient than OpenMP for

manycore – memory wall

Thread-Level Parallelism

➲ Hybrid Programming
➲ Lowering MPI – lack of scalability
➲ MPI + OpenMP / Pthreads / etc.
➲ Advantage

● More control
➲ Disadvantage

● More complexity
● Close to hardware instead of

algorithm
● Hard to reuse existed codes

MPICH2 – Implementation

➲ Communication Subsystem – Nemesis
➲ One lock-free receive queue per process
➲

MPICH2 – Location of free queue

➲ One global
● Good for balance on multicore
● Lack of scalability

➲ One per process deq. by one side
● Good for NUMA – less remote

access
● Inevitable imbalance

➲ MPICH2 uses the latter
➲ Dequeued by the sender itself

MPICH2 – pseudocode of queue

Enqueue (queue, element)
 prev = SWAP (queue->tail, element); //atomic swap
 if (prev == NULL)
 queue->head = element;
 else
 prev->next = element;
Dequeue (queue, &element)
 element = queue->head;
 if (element->next != NULL)
 queue->head = element->next;
 else
 queue->head = NULL; //CAS – atomic compare and swap
 old = CAS (queue->tail, element, NULL);
 if (old != element)
 while (element->next == NULL)
 SKIP;
 queue->head = element->next;

MPICH2 – Optimizations

➲ Reducing L2 cache miss
● Both head and tail accessed when

● Enqueuing onto an empty queue
● Dequeuing the last element

● One miss less if head and tail are in
the same cache line

● False sharing if more elements
● With a shadow head copy, miss only

when enqueuing onto an empty
queue or dequeuing from a queue
with only one element

MPICH2 – Optimizations

➲ Bypassing Queues
● Fastbox – single buffer
● One per pair of process
● Check fastbox first and then the

queue
➲ Memory Copy

● Assembly/MMX in place of
memcpy()

➲ Bypassing the Posted Receive Queue
● Checks all send/recv pair instead of

matching send to current recv

MPICH2 – Large Message Transfer

➲ Queues have to store unsent data
➲ What if the message is large?

● Bandwidth pressure
● Cache pollution

➲ Rendezvous instead of eager

OpenMPI – sm BTL

➲ Shared Memory Byte Transfer Layer
➲ Transfer fragments of broken messages
➲ Sender fills a sm fragment in its free lists

● Two free lists, for small/large msg.
➲ Sender packs the user-message fragment into

sm fragment.
➲ Sender posts a pointer to this shared frag into

FIFO queue of receiver.
➲ Receiver polls its FIFO(s). Unpack data when

it finds a new fragment pointer and notifies
the sender

KNEM – Kernel Nemesis

➲ Linux Kernel Module
➲ Problems of traditional buffer copying

● Cache pollution
● Waste of memory space
● High CPU use

➲ Solution
● Direct single copying in kernel

space

KNEM – Implemetation

Experiment Platform

➲ Hardware
● Quad-Core Intel Core i5 750

2.67GHz
● L1: 32KB+32KB per core
● L2: 256KB per core
● L3: 8MB shared

● 4GB DDR3 @ 1333MHz

Experiment Platform

➲ Software
● Arch Linux x86-64 with Kernel

2.6.36
● GCC 4.2.4
● MPICH2 1.3.1 -O2

● No LMT / LMT Only / LMT +
KNEM

● OpenMPI 1.5.1 -O2
● sm BTL, with and without KNEM

● KNEM 0.9.4 -O2, without I/OAT
● OSU Micro-Benchmarks 3.2 -O3
● 2 processes for one-to-one
● 4 processes for other cases

Results

Results

Results

Results

Results

Results

Results

Analysis

➲ Nemesis (without LMT/KNEM)
● Best for small messages

➲ sm BTL – best for large messages
➲ Watershed: about 16KB
➲ 16KB~4MB

● KNEM accelerates sm BTL
● But slower for LMT

➲ 4MB+ (larger than L3 cache)
● KNEM makes sm BTL slower
● But improves LMT
● sm BTL > KNEM > LMT for memory
● Will KNEM be better with DMA?

Analysis

➲ LMT > Original Nemesis
● Threshold: 32KB~256KB
● Smaller if more concurrent accesses
● Steep Slopes at 32KB – LMT

disabled
➲ How about

● More cores?
● Difference between 1-1 and all-

all
● Private cache?
● I/OAT & DMA?

● Will KNEM be faster?

Thank you!

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

